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ON THE THEORY OF STABILITY OF CYLINDRICAL THIN-WALLED SHELLS 
UNDER THE ACTION OF EXTERNAL PRESSURE* 

A.N. GUZ' 

A method is described of constructing a linearized, two dimensional theory of stab 
ility of elastic, thin-walled circular cylindrical shells acted upon by a uniform 
external pressure in the form of a "follower" load. The relations of the theory of 

shells constructed with the help of the Kirchhoff-Love hypothesis for the casewhen 

the subcritical deformations are small and the subcritical state is determined ac- 

cording to the geometrically linear theory, are used. The "follower" load is 
determined in the above formulation using the refined expressions given in /1,2/. 

As a result, a fundamental system of differential equations with a symmetricoperator 
matrix is obtained for the problem in question. A characteristic equation is obtain- 

ed for a hinged shell in a subcritical membrane state. Asymptotic analysis of the 

roots of this equation yields the conditions under which the solutions for the case 

of external pressure in the form of a follower and a dead load coincide. 

We note that a solution of the linearized problem of stability of a hinged cylindrical 

shell acted upon by a uniform external pressure in the form of a dead load was already obtain- 

ed by Mises in /3/. The solution given in /3/ is quoted in a number of monographs, in parti- 

cular in /4/, and is widely used together with its various generalizations, in the analysisof 

the theoretical and experimental results. A majority of the experimental results however is 
obtained under the conditions when the uniform external pressure is realized by meansofhydro- 

static loading, i.e. in the form of a follower load. 

1. Formulation of the problem. We consider a circular cylindrical shellof constant 

thickness h, radius R and length L, under a uniform external load of intensity g. The 

shell material is assumed elastic and isotropic. We construct a fundamental system of differ- 

ential equations for the case when the external pressure has the form of a follower load. We 

adopt the (.p,y,z)-coordinate system defined in ch.2 of /4/ and choose the corresponding posi- 

tive directions of some of the magnitudes. We write the linearized equations of the theory of 

shells in the form 

LU + BU + Q(q- phU”)= 0 

Qij = * (6,'6j'+ 6i*6j2 - fJi"8j") 

(1.1) 

Here u is the middle surface displacement vector with components U, v and W, q is the surface 
load vector with components qx,qu and Pi, L is the symmetric matrix of differential operators 

of the linear theory of shells, B is the matrix of differential operatorswithparametricterms, 

obtained as a result of linearizing the nonlinear equations, Y is the Poisson's ratio, E is 

the Young's modulus, 63 is the Kronecker delta and p is the shell material density. In the 

simplest case of the subcritical membrane state, the elements of the matrix B have the form 

I -+ a= 
Hi j = hi%,“qR -ET--&? (1.2) 

In order to construct the fundamental system of equations in the above formulation we 

must obtain, in terms of the displacements, the components of the surface load corresponding 
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to the case of the follower load. Linearized expressions for their determination were obtain- 
ed in /5-%/ in accordance with the theory of small deformations. The theory of finite de- 
formations /9/ was used in /1,2/ to obtain the expressions which led to a number of the 
qualitative and quantitative results /1,2,10,11/ within the framework of three-dimensional, 
linearized theory of stability for the case of small subcritical deformations, which coincide 
with the corresponding results of the three-dimensional linearized theory of stability for 
the case of finite subcritical deformations. As we know, the latter theory is free of tile 
errors of kinematic character, and this confirms the expediency of using the refined expres- 
sions of /1,2/. In what follows, we shall also use, for the sake of generality, the expres- 
sions given in /5-88/, calling the latter the normal, and those of /1,2/ the refined 
expressions. 

The contravariant components 4 j of the surface load written for the problem in question 
in the Lagrangian coordinates have, according to the refined expressions /1,2/, the form 

fJJ = - CJ(X'V,Ua- Pg@jV#) (1.3) 

while, according to the normal expressions /S-S/ we have 

4' = --~N+~ (1.4) 

Here h'idenote the contravariant components of the unit normal to the surface under a specif- 
ied follower load, in the natural (undeformed) state, and g'fi denote the contravariant com- 
ponents of the metric tensor in the natural state. The covariant differentiation is carried 
out with help of the basis vectors in the natural state. 

Let us employ the Kirchhoff-Love hypothesis. Since the shells are thin-walled, we can 
assume that the pressure in the form of a follower load is applied at the middle surface at 
z = 0. In this case the expressions corresponding to the refined /1,2/ and normal /5-%8/ ap- 
proach have the form 

(1.5) 

au am 
q,==-qyg-, qy"-qYJ- y, q,=o (1.61 

In accordance with (l-5), (1.6) and (l.l), we write the basic system of equations in the form 

LU+BU+IIU-pphQU"=O (L-7) 

The term IIU corresponds to the perturbation in the surface load where II is the matrix of 
differential operators, the nonzero elements of which have the form 

11iJ = ,UIij*, A = Q (i - V*)/(Eh), IIl_q* = --6,d/OZ (1.8) 

n,$* = -6,iR, nzs* = --6,aiay, n,,* = 4ipalar 
nsl* = - 6 , ala&l, &’ = &lR 

Various values of &(C=i,Z) correspond to particular cases of the problem in question. When 
6,~& = 0, the external pressure appears inthe form of a dead load. The case 6,=1,&,=0 
corresponds to external pressure in the form of a follower load, the components of which are 
obtained from the normal /S-8/ expressions. When s, ss6, = i I the external pressure is re- 
duced to a follower load the components of which are found from the refined expressions /I, 
2/. 

From (1.8) it follows that a symmetric matrix of differential operators underanexternal 
pressure in the form of a follower load can only be obtained in the case of the refinedtheory 
/1,2/. We also note that the results regarding the construction of the matrix Ii* remain in 
force also for the inelastic models of the shell material. Next we shall investigate the 
case of a hinged shell in the subcritical membrane state. 

2. Hinged shell. In the case of a support hinged along the end faces, the boundary 
conditions at z =0 and x= L have the following form: 

We shall assume that the end faces of the shell rest on supporting frames which ensure that 
a subcritical membrane state exists /4/. In this case the elements of the matrix B have the 
form (1.2). The first condition of the hinged support (2.1) at the end faces ensures the 
fulfilment of the first sufficient condition of applicability (formula (9) of /12./) of the 
Euler method of investigating the problem in question. In this connection we shall delete 
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from (1.7) the inertial terms and thus obtain an eigenvalue problem with boundary conditions 
(2.1) and the equation 

AU=0 (2.2) 
9% 

4, = ygi + 
l-v 3 1+v a= 

2aya, A,, s AlI = -- 
2 azag 7 

A,,=-(++6,h)& 

We note that under the action of a follower load the matrix A will be symmetric only 

when the refined expressions /1,2/ are used, while (2.2) implies that the matrix A will not 

be symmetrical when the normal expressions /5-8,' are used. At the same time, as follows 

from /12/, the problem in question for the hinged shell will be self-conjugate. Below we 
shall investigate the problem, in a general form, for all three particular cases. 

We write the displacements satisfying the boundary conditions (2.1) at z = 0 and z=L 
in the following form: 

mnz 
e=~,eos--i;-sin+, 

mnz 
u=f,sinTca9+ (2.3 

mnz 
w =fssin Tsin+, fi = const 

From (2.2) and (2.3) we obtain the characteristic equation in the form 

detI/wjII = 0; i, j = 1,2,3 
l--v 

an= z+E, c+EaoL$l= 
1+v 
2 6, a13 = (V f&P) VE 

%l= (v + &P) V/F 

a22 = (1 + Y) (1 
l-v 

+ 2" 
) 
+ &pn-8, a13 = 1 + &P + w (1 + &) 

%,=~+bP+yn*(1+e), a,,=n’y (i+e)‘+i--n’p+&p 

w(T)“, v=&, p=RA 

(2.4) 

If we compute the elements of the matrix L using the technical theory of shells only, then 

we should delete from the elements %8 and alp of the determinant (2.4) the terms contain- 

ing the multiplying factor y. 

3. Analysis of the characteristic equation. We shall carry out an analysis of 

the characteristic equation (2.4) corresponding to the technical theory of shells. Let us 

construct solutions of (2.4) for particular cases in the form of series in terms of small 

parameters. Let us consider the case when the following conditions hold: 

yel,e<ci (3.1) 

From (2.4) it follows that the first condition of (3.1) holds always forthethin-walledshells. 

The second condition of (3.1) demands that the number of waves along the directrix be greater 

than the number of waves along the generatrix. Since in the course of experimental investi- 

gations a single half-wave is always formed along the generatrix and several waves along the 

directrix, we can assume that the second condition of (3.1) also holds. In this casewe shall 

seek a solution of (2.4) in the form 

p = g ZijE$j 

i, j=o 

Assuming that 0 (es) 4 y & 0 (e*), we shall limit ourselves to the approximation 

P = ZOO + Gle + %e’ + ZcllY 

From (2.4) and (3.3) we obtain two roots for zao 

(3.2) 

(3.3) 

(3.4) (%)I = 0, (42 = - 61 
np + &(I - n-P) 
i + a* (1 - n-2) 
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a follower load, the second root (3.4) has no physical meaning since in this 

According to (1.4), (3.3) and (3.4), we have 

From (3.3)- (3.5) we obtain the following expression: 

Setting in (3.6) &z&=0, we obtain the value of the root for the case when the externalpres- 

sure has the form of a dead load 

The expression (3.7) coincides with the known result (/4/, p.496) provided that the condition 

(3.1) holds, and this implies that the values of the cirtical load also coincide. 

When the external pressure has the form of a follower load, we put in (3.6) 6, = 1 and 

S,=O or 6,=&-i to obtain the value of the root with the accuracy of (3.3), in the fol- 

lowing form: 

(3.8) 

Wenotethat, within the approximation given by (3.1) and (3.3), in the case of the ex- 

ternal pressure in the form of a follower load, the value of the root obtained using the re- 

fined approach /1,2/ (Si=S,=1) coincies with the value of the root obtained using the normal 

approach /5-8/ (6,=i,dl=O) and has the form (3.8). However, in contrast to the normal ap- 

proach, the refined approach yields a symmetric matrix of differential operators of the self- 

conjugate problem. In the general case the quantitative differences between the solutions of 

the problem with external pressure in the form of a follower and dead load can onlybeexplain- 

ed by applying numerical methods to the equation (2.4). 

In conclusion, we shall show under which conditions the solutions of the problems with 

external pressure in the form of the follower and dead loads coincide. From (2.4), (3.1), 

(3.7) and (3.8), it follows that the solutions in question become identical when the follow- 

ing conditions hold: 

(mrIR/nL)~~ 1, n= >> 1 
(3.9) 

Thus we see that if the shell parameters are such that conditions (3.9) hold for the classical 

solution /3/ (see also /4/) in the case of a dead load, then the solution also holds when the 

external pressure has the form of a follower load. In this case a comparison with the results 

of experimental study is also more correct in the case when the external pressure assumes the 

form of a hydrostatic load. 
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